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Abstract. In the field of distributed system, Arbitrary Pattern Forma-
tion (APF) problem is an extensively studied problem. The purpose of
APF is to design an algorithm to move a swarm of robots to a partic-
ular position on an environment (discrete or continuous) such that the
swarm can form a specific but arbitrary pattern given previously to every
robot as an input. In this paper the APF problem is discussed on con-
tinuous circle by a swarm of homogeneous, anonymous, oblivious, silent
mobile robots with no chirality. The algorithm discussed here, can solve
APF problem deterministically within O(n) epochs without collision un-
der Semi Synchronous scheduler with n (where n is odd) mobile robots if
the initial configuration is rotationally asymmetric. For any even number
of robots (grater than three) the algorithm can be modified to a proba-
bilistic one to solve APF. Also if the initial configuration is rotationally
symmetric then APF problem can’t be solved by any deterministic algo-
rithm.

Keywords: APF · Continuous circle · Oblivious · mobile robots · dis-
tributed algorithm.

1 Introduction

Applications of distributed systems and their relevant problems have gained sub-
stantial importance in the last two decades. Unlike a centralized system, using a
swarm of inexpensive, simple robots to do a task is more cost-effective, robust,
and scalable. These swarms of robots have many applications like rescue oper-
ations, military operations, search and surveillance, rescue operations, disaster
management, cleaning of large surfaces, and so on.

Researchers are interested in studies about using swarm robots with mini-
mum capabilities to do some specific tasks like Gathering, Arbitrary Pat-

tern Formation, Dispersion, Exploration, Scattering etc. The robots
are autonomous (have no centralized controller), anonymous (have no IDs), and
homogeneous (have same capabilities and execute same algorithm). Depending
on the capabilities of robots there are four types of robot models: OBLOT ,
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FST A, FCOM, LUMI. In the OBLOT model robots do not have any persis-
tent memory of their previous round i.e. oblivious and they can’t communicate
with each other i.e. silent. In the FST A model robots are not oblivious but
silent. In the FCOM model robots are oblivious but not silent. In the LUMI
model robots are neither oblivious nor silent.

Each robot executes a Look-Compute-Move (LCM) cycle after activa-
tion. In Look phase robot takes a snapshot of its surroundings and collects the
required information. Then the robot calculates the target using that informa-
tion in the Compute phase and moves to the destination in Move phase. A
scheduler is the controller of the activation of robots. There are three types of
schedulers: Fully synchronous (FSync) scheduler, Semi synchronous (SSync)
scheduler, Asynchronous (ASync) scheduler. In FSync scheduler, time is di-
vided into global rounds of the same duration and each robot is activated in
every round and executes the LCM cycle. In SSync scheduler, here also time is
divided into global rounds of the same duration like FSync, but all robots may
not be activated at the beginning of each round. In ASync scheduler robots are
activated independently and the LCM cycle is not synchronized here.

The problem considered here is the Arbitrary Pattern Formation (APF) prob-
lem in which a swarm of robots is deployed in an environment (discrete or con-
tinuous domain). APF problem aims to design an algorithm such that robots
move to a particular position and form a specific but arbitrary pattern which is
already given to every robot as input. There is a vast literature of APF in both
discrete and continuous domains ([18,19,14,11,4,5,7,2,3,1,8,16,6]). Most of the
works of APF in continuous domain considered on the Euclidean plane. There
are other sorts of environments which are included continuous domain, e.g. any
closed curve embedded on the plane where robots can only move on that curve.
In real life, such environments also exist and are hugely applicable in different
scenarios such as roads, railway tracks, tunnels, waterways, etc. Another exam-
ple of this kind of environment can be a circle of fixed radius embedded on the
plane. Studying this problem is interesting because the solution for this prob-
lem can be extended to all other closed curves. Thus in this paper, we have
considered the problem of Arbitrary Pattern Formation (APF) on a circle.

2 Related Works and Our Contribution

2.1 Related work

In swarm robotics, Arbitrary Pattern Formation (APF) problem is a hugely
studied problem. This problem was first introduced by Suzuki and Yamashita
in [18] on the Euclidean plane. Later they characterized the geometric patterns
formable by oblivious and anonymous robots in [19] for fully synchronous and
asynchronous scheduler. After that this problem has been considered on different
environments on continuous and discrete domains ([14,11,4,5,7,2,3,1,8,16,6]).

In the continuous domain, most of the works which consider arbitrary pat-
tern formation are done on the Euclidean plane under different settings. In [14]
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Flocchini discussed the solvability of the pattern formation problem by consid-
ering oblivious robots with fully asynchronous schedulers. They showed that if
the robots have no common agreement with their environment, they are unable
to form an arbitrary pattern. Moreover, if the robots have one axis agreement,
then any odd number of robots can form an arbitrary pattern, whereas the even
number can’t. Further, if the robots have both axis agreement, then any set of
robots can form any pattern. They proved that it is possible to elect a leader if
it is possible to form any pattern for n ≥ 3 robots. The converse of this result
is proved and a relationship between leader election and arbitrary pattern for-
mation for oblivious robots in the asynchronous scheduler is studied in [11]. The
authors showed that for n ≥ 4 robots with chirality (respectively for n ≥ 5 with-
out chirality), the Arbitrary pattern formation problem is solvable if and only
if leader election is possible. In [4] the authors proposed a probabilistic pattern
formation algorithm for oblivious robots under asynchronous scheduler without
chirality. Their protocol is the combination of two phases, one is a probabilistic
leader election phase and another is a deterministic pattern formation phase.
Later in [5] they proposed a new geometric invariant that exists in any config-
uration with four oblivious anonymous mobile robots to solve arbitrary pattern
formation problems with or without the common chirality assumption. In [7]
authors studied Embedded Pattern Formation without chirality with oblivious
robots. They characterized when the problem can be solved by a deterministic
algorithm and when it is unsolvable. In [2] authors studied the APF problem for
the robots whose movement can be inaccurate and the formed pattern is very
close to the given pattern. In [3] the authors provided a deterministic algorithm
in the Euclidean plane with asynchronous opaque robots.

Note that all the works in arbitrary pattern formation considering contin-
uous domain have been done only for the Euclidean plane where the robots
can arbitrarily move from one point to another via infinitely many paths. But
there are some environments in continuous domain in which the movements of
robots from one point to another are restricted to a finite number of possible
paths. A continuous circle of fixed radius is one such environment. To the best of
our knowledge, there are some works ([17,13,15,9,10,12]) which considered con-
tinuous circle as their corresponding environment. The problem of patrolling,
gathering, and rendezvous are the main focus of these works. But none of them
considered the problem of APF on the continuous circle.

2.2 Our Contribution

In this work, our aim is to solve the problem of Arbitrary Pattern Formation
(APF) on a continuous circle by oblivious and silent mobile robots with full visi-
bility under semi-synchronous scheduler. To the best of our knowledge, the APF
problem has not yet been considered on a continuous circle. So in this paper, we
have considered this problem for the first time. Here the robots do not agree with
a particular direction i.e. robots have no chirality. The movements of robots are
restricted only in two directions, clockwise and anti-clockwise from any point. So,
avoiding collision in a circle is more difficult than avoiding collision on a plane.
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The robot model considered here is the weakestOBLOT model. In this problem,
there is no particular landmark or door from which the robots enter. Here we
discussed that, if the initial configuration is rotationally asymmetric then, for
any odd number of robots the proposed deterministic algorithm APF CIRCLE

can solve the problem of Arbitrary Pattern Formation under Semi Synchronous
(SSync) scheduler within O(n) epochs avoiding collision, where n is the number
of robots in the swarm. For any even number of robots, which is greater than
three, the algorithm can be modified to a probabilistic one that solves APF on a
continuous circle within O(n) epochs. We have also shown that the APF prob-
lem can’t be solved deterministically if the initial configuration is rotationally
symmetric.

3 Model and Problem Definition

3.1 Problem Definition

Let CIR be a continuous circle of fixed radius. Let n robots resides on the
perimeter of CIR such a way that the configuration formed by them is rota-
tionally asymmetric. The robots can move freely on the circle. A sequence of
angular distances β0, β1, β2 . . . , βn−1 is given to the robots such that the sum
of the angles of the sequence is equal to 2π. The problem is to design a dis-
tributed algorithm for the robots so that by finite execution of the algorithm,
the robots move in such locations on CIR, such that the final configuration has
the following property:

✧ There exist a robot, say r0 and a direction D ∈ { clockwise, anticlockwise}
such that the angular distance between the i-th and (i + 1)-th robot in the
direction D (denoted as ri and ri+1 respectively) is βi where all the indices
are considered under modulo n.

3.2 Model

Robot Model: All robots are placed on the perimeter of a circle, say CIR. Here
the robots can move only on the perimeter of the circle. Robots have no par-
ticular orientation (i.e., no agreement on clockwise or anticlockwise direction).
Robots have full visibility of the circle. The initial configuration is rotationally
asymmetric. The movements of the robots are rigid i.e. robots always moves to
its destination in a particular round. Robots have following properties-

Autonomous: Robots don’t have any centralised controller.
Anonymous: Robots have no IDs.
Homogeneous: All robots have same capabilities and execute the same algo-
rithm.
Oblivious: Robots have no persistent memory.
Silent: Robots have no means of communications.
Visibility: Robots have full visibility of the circle i.e., robots can see all other
robots on the circle.
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LCM cycle: Each robot executes a cycle of Look-Compute-Move(LCM)
phases upon activation.

LOOK: In look phase a robot takes a snapshot of its surroundings and gets
the location of other robots on the circle according to its own coordinate .
COMPUTE: Robot determines target location using the input from the
snapshot of the look phase by executing the provided algorithm.
MOVE: In move phase robot moves to the destination point calculated in
the compute phase.

Scheduler Model: The activation of robots are controlled by an entity called
scheduler. Depending on the activation timing there are three types of schedulers:

Fully synchronous (FSync): In fully synchronous scheduler time is divided
into rounds of equal length and all robots are activated at the beginning of
every round and performs the LCM cycle synchronously.

Semi synchronous (SSync): Similar to fully synchronous scheduler here also
time is divided into rounds of equal length. But all robots might not get ac-
tivated at the beginning of a particular round. In a particular round the
activated robots perform the LCM cycle synchronously. Note that semi syn-
chronous scheduler is more generalised than fully synchronous scheduler.

Asynchronous (ASync): In asynchronous scheduler time is not divided into
rounds like fully synchronous and semi synchronous scheduler. Robots are
activated independently. In a particular moment of time some robots may be
in Look phase, some in Compute phase, some in Move phase or some may be
idle. Asynchronous scheduler is the most general among all the schedulers.
In this paper, Semi Synchronous (SSync) scheduler has been considered to
solve the problem.

4 Prelimineries

In this section, we first justify the reason for assuming the initial configuration is
rotationally asymmetric. Then, we define some terminologies here in this section
that will be needed to describe the algorithm provided in the next section.

Proposition 1. There is no deterministic distributed algorithm that solves arbi-
trary pattern formation problem on a continuous circle if the initial configuration
is rotationally symmetric.

Proof. Let C(0) be the initial configuration which is rotationally symmetric. Let
C(0) has a k−fold symmetry i.e., for a rotation of 2π

k
along the center, the

configuration remains the same. By proposition 2.4 in [17] if the scheduler is
fully synchronous then for any algorithm A, the new configuration will have a
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k′−fold symmetry after one execution of A, where k′ ≥ k. Thus for any finite
execution of A, the configuration will always have a k1−fold symmetry where
k1 ≥ k. So if the target pattern is asymmetric it can not be formed by the robot
swarm by finite execution of A. Hence the result. ⊓⊔

Definition 1 ((A,B)D). Let A and B be two points on the circle CIR. Let D be
a direction either clockwise or anticlockwise. Then (A,B)D denotes the angular
distance from point A to point B in the direction D.

Definition 2 ( Set of Angle Sequences of a robot r).
Let, R = {r0, r1, r2, . . . , rn−1} be the set of robots placed consecutively in a
fixed direction, say D (either clockwise or anticlockwise) on the circle CIR.
Let θi (mod n) be the angular distance from the location of robot ri (mod n) to the
location of robot ri+1 (mod n) in the direction D. Then the set of angle sequences
of the robot r = r0, denoted as AS(r), is the set {ASD(r),ASD′(r)} where,
D′ is the opposite direction of D and ASD(r) = (θ0, θ1, . . . , θn−1), ASD′(r) =
(θn−1, θn−2, . . . , θ0) are two angle sequences in the direction D and D′ respec-
tively.

Since the initial configuration is rotationally asymmetric then, for a fixed
particular orientation (either clockwise or anti-clockwise) all the robots have
different angle sequences (??). So, note that, for two robots, say r1 and r2 if
ASD1

(r1) ∈ AS(r1) is equal to ASD2
(r2) ∈ AS(r2) then, D1 must be equals to

D′
2

Definition 3 (Nominee). A robot rl is considered as the nominee if
min(∪r∈RAS(r)) ∈ AS(rl)

Fig. 1: Here, AS(r) = {(30◦90◦60◦75◦105◦), (105◦75◦60◦90◦30◦)} is the set of
angle sequences for the robot r. Note that AS(r) contains the minimum angle
sequence (30◦90◦60◦75◦105◦) so, r is a nominee. This configuration is also a
single nominee configuration.
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Proposition 2. In the initial configuration, there are at least one and at most
two nominees.

Proof. Since the initial configuration is rotationally asymmetric, by a result
stated in [17] it can be said that all the robots have distinct angle sequences
in a particular direction. Thus n robots have n distinct angle sequences in a
particular direction. Similarly in opposite direction, there exists n distinct angle
sequence. Among those 2n angle sequences, at least one angle sequence must be
minimum. If this minimum angle sequence belongs to AS(r), then r is selected
as the nominee. So the initial configuration must have at least one nominee.

Now, let it be assumed that there are more than two nominees in the initial
configuration. Without loss of generality let there be three nominees in the ini-
tial configuration. Let the first nominee whose angle sequence is minimum, has
the minimum angle sequence in a particular direction say, D. Then the second
nominee must get its minimum angle sequence in the direction D′, the opposite
direction of D (as no two robots can have minimum angle sequence in the same
direction). Now, the third nominee must have its minimum angle sequence in the
direction of either D or D′. But this can’t be possible because, in a particular
direction, no two robots have the same angle sequence. So there can not be more
than two nominees in the initial configuration. ⊓⊔

Fig. 2: A double nominee configuration where both r and r′ are nominees. The
angle bisector AB contains a robot. Arc(r) is highlighted with red dotted line
and Arc(r′) is highlighted with green dotted line.

Definition 4 (Single nominee configuration). This is a configuration where
there is only one nominee.

Definition 5 (Double nominee configuration). This is a configuration where
there are two nominees in the configuration.

Definition 6 (Angle Bisector in a double nominee configuration). Let
r and r′ be two nominees in a double nominee configuration. The angle bisector
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of this configuration is defined as the straight line that bisects the angles formed
by the robots r and r′ and is denoted as AB.

In the future, the term “angle bisector of a configuration” or the symbol AB will
always be used for a double nominee configuration even if it is not mentioned
explicitly.

Definition 7 (Arc of a nominee in a double nominee configuration).
Let r and r′ be two nominees in a double nominee configuration. Let AB be the
angle bisector of the angle between r and r′. Now, AB divides the circle into two
arcs. Among these two arcs, the arc on which the robot r is located except the
points of AB is called the arc of the robot r and is denoted as Arc(r).

Definition 8 (Leader). We call a robot, say r, the leader if any one of the
following statements is true for the robot r:

1. r is the nominee in a single nominee configuration.
2. r is a nominee in a double nominee configuration and Arc(r) has more robot

than Arc(r′) where r′ is another nominee.

Definition 9 (Leader configuration). A configuration is called a leader con-
figuration if it has a leader.

Definition 10 (Pivotal Direction). In a leader configuration, the direction in
which the leader has the minimum angle sequence is called the pivotal direction.
The pivotal direction is denoted as Dp.

Fig. 3: Here the configuration is a leader configuration and r is the leader. The
direction Dp is the direction in which r has the minimum angle sequence.

Proposition 3. If an asymmetric configuration with an odd number of robots
is not a leader configuration then the configuration must be a double nominee
configuration with exactly one robot on the angle bisector AB.
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Proof. Let C be an asymmetric configuration then by Proposition 2 C must
be either a single nominee configuration or a double nominee configuration. By
Definition 8 and Definition 9 any single nominee configuration must be a leader
configuration. So, C must be a double nominee configuration. let r and r′ be the
two nominees in C. Let AB be the angle bisector of the configuration C. Now
since the configuration C is not a leader configuration, the number of robots on
Arc(r) = number of robots on Arc(r′). Now if there is no robot or two robots
on AB then the total number of the robots becomes even in the configuration,
contrary to our assumption. So, AB must contain exactly one robot. ⊓⊔

Definition 11 (Move Ready Robot). In a leader configuration, let r be the
first robot from leader, say r0 in the direction Dp which satisfies the following
condition:

1. r is not the first or second neighbour of leader r0 in the direction Dp.
2. If D is the destination of r in direction D and r′ be the neighbour of r in

the direction D. Then (R,R′)D − (R,D)D > α1, where α1 is the angular
distance between first and second neighbour of r0 in the direction Dp and R

and R′ are the locations of r and r′ respectively on the circle.

Then r is defined as the Move Ready robot of the configuration

5 Algorithm APF CIRCLE

Let r0, r1, . . . rn−1 be n robots (n is odd and n > 2) on a continuous circle CIR.
The robots can move freely on CIR. Let for a robot ri the location of ri on CIR
is denoted as Ri. Let initially the configuration is rotationally asymmetric. Let
D be the direction in which ri+1 is a neighbor of ri. Also, let (Ri, Ri+1)D = αi

where all indices are considered in modulo n. Note that,
∑n−1

i=0 αi = 2π. Now,
each robot has been provided with a sequence of angle β1, β2, . . . , βn−1 as input
such that,

∑n−1
i=0 βi = 2π. The robots are oblivious, silent, and have no chirality.

The circle is not oriented. In this setting, the algorithm provided in this section
guides the robots to form the sequence of angles provided to them on the circle
CIR.

The first challenge to do so is to find a robot and a direction from which this
formation will start. This will be done by leader election. Now since the robots are
oblivious the next problem that arises is to make the leader robot remain leader
and the direction in which the pattern will be formed (pivotal direction) fixed
throughout the execution of the algorithm. All of these challenges are considered
and handled in the provided algorithm. In the following, the description of the
algorithm and its correctness are discussed in detail.

5.1 Description and Correctness of APF CIRCLE

Let C(0) be the initial configuration. According to Proposition 2, there can be at
most two nominees and at least one nominee in the configuration C(0). If there
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is a single nominee then it is the leader and the configuration is a leader config-
uration (Definition 8 and Definition 9). Otherwise, there must be two nominees
in C(0). Let r1 and r2 be two nominees in C(0). Now there are two possibili-
ties. Either Arc(r1) and Arc(r2) have same number of robots or they don’t. Let,
Arc(r1) and Arc(r2) do not have equal number of robots then without loss of
generality Let Arc(r1) has more robots. In this case, r1 would be the leader and
the configuration is again a leader configuration. So, let us consider the case
where Arc(r1) and Arc(r2) have equal numbers of robots. According to Proposi-
tion 3, there must be exactly one robot on the angle bisector AB. Let us denote
that robot as rd. Thus, when C(0) has two nominees and it is not a leader con-
figuration then, the robot rd moves a positive angular distance ǫd towards any
of its neighbor, say r, in the direction D such that, 0 < θ − ǫd < α0 (α0 is the
smallest angle in the initial configuration and θ = (Rd, R)D ) and also, after rd
moves the angular distance ǫd towards r, there is no robot on the angle bisector
of rd and r (Fig.4). In the following two lemmas, we first prove the existence of
such ǫd and then prove that this move of rd converts the configuration into a
leader configuration.

Lemma 1. If the initial configuration is not a leader configuration then, the
robot rd on the angle bisector AB always finds an ǫd > 0 such that after moving ǫd
towards a neighbor r in the direction D, there is no robot on the angle bisector of
Rd and R. Also if in the initial configuration (Rd, R)D = θ then, 0 < θ−ǫd < α0.

Proof. Let initially the angle bisector AB intersect the circle CIR at two points
A and B. Without loss of generality let rd be on A. Without loss of generality
let rd decides to move towards its neighbor r in the direction say D. Let initially
(Rd, R)D = θ ≥ α0 as α0 is the minimum angle of C(0). We will show that there
exists a positive ǫd < θ such that after rd moves ǫd towards r, in the direction
D, rd and r will not have any robot on the angle bisector of the angle formed by
the points Rd and R. Also, angular distance between Rd and R will be strictly
less than α0 after the move of rd (i.e., θ− ǫd < α0). Let Pα and Qα be the points
of intersection of the circle CIR and the angle bisector of the angle formed by
Rd and R, after rd moves towards r by an angular distance α in the direction D.
Here without loss of generality, it is assumed that Pα is the point on the major
arc formed by Rd and R and Qα is the point on the corresponding minor arc
(Fig.4).

Case 1: First, let us consider the case when θ = α0. Let, 0 < α < α0. Now,
if Qα is empty then we are done. So, let us assume for all positive α < α0, Qα

is non-empty. Now consider the one-one correspondence α 7→ Qα. Now since α

can have infinitely many values, there must be infinitely many Qα which must
be occupied by a robot in the configuration contrary to our assumption that
there are finitely many robots on the circle CIR. Hence, there must be some α,
say ǫd, in the open interval (0, α0) = (0, θ) such that, Qǫd is empty. Now since
θ > ǫd > 0 = θ − α0, the condition, 0 < θ − ǫd < α0 is satisfied.

Case 2: Now let us consider the case when θ > α0. Here ǫd must be in the
open interval (θ − α0, θ) for the condition 0 < θ − ǫd < α0 to satisfy. Now let
us consider the one-one correspondence α 7→ Qα that maps all points which are
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at an angular distance α ∈ (θ − α0, θ). Again by a similar argument as in the
previous case it can be shown that there is an α, say ǫd ∈ (θ − α0, θ) such that
Qǫd is empty. Also since θ − α0 < ǫd < θ, the condition 0 < θ − ǫd < α0 is also
satisfied. Hence the result. ⊓⊔

Fig. 4: rd is the robot on AB of the double nominee configuration with two
nominees r1 and r2. Here in this scenario the robot rd moves an angular distance
ǫd to D.

Corollary 1 If the initial configuration is not the leader configuration, then
within one epoch the configuration will be the leader configuration.

Proof. Since C(0) is not a leader configuration, the robot rd on AB can move
an angular distance ǫd > 0 satisfying the condition 0 < θ − ǫd < α0, towards
its neighbor r in the direction D such that after the move, the angle bisector of
the angle formed by Rd and R does not contain any robot (By Lemma 1). Here,
θ = (Rd, R)D. Now note that after this move by rd, if the configuration is a single
nominee configuration then, by Definition 8 and Definition 9, the configuration
must be a leader configuration. Otherwise, if the configuration is not a single
nominee configuration then, rd and r must be the two nominees in the new
configuration. But since they do not have any robot on AB, the configuration
must be a leader configuration. ⊓⊔

Thus, if the initial configuration is not a leader configuration, it will become
one within one epoch.

Taget embedding: To embed the target pattern on the circle CIR, a point
and a direction on CIR must be agreed upon by all the robots. let T0 be the
point and D be the direction. Let the j-th target locations on CIR from T0 in
the direction D is denoted by Tj, where j ∈ {0, 1, . . . , n − 1}. The points are
embedded in such a way on CIR that (Tj , Tj+1)D = βj where the sequence
β0, β1, . . . , βn−1 is lexicographically smallest upto rotation of the input pattern
given to the robots (all the indices are considered in modulo n).
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Fig. 5: (β0, β1, . . . βn−1) is the smallest in lexicographic ordering of all possible
sequences that can be formed from the input upto rotation. The sequence is
embedded on the circle starting from the location of r0 and in the direction Dp.

In a leader configuration, the location of leader r0, denoted as R0 serves the
purpose of T0. We also claim that the pivotal direction Dp of r0 must be unique,
which serves the purpose of the direction on which all robots can agree. Thus,
the target locations Tj can be embedded on CIR as described above (Fig. 5).

The next lemma ensures the claim that the leader r0 must have a unique
pivotal direction Dp.

Lemma 2. In a leader configuration, the pivotal direction is unique.

Proof. If possible let, the leader r0 has two pivotal directions D and D′. Then
both of ASD(r0) and ASD′(r0) are minimum and equal. Let, R1 and Rn−1

are the location of the neighbours of r0 in the direction D and D′ respectively.
Then both the angles (R0, R1)D and (R0, Rn−1)D′ must be α0, where α0 is the
minimum angle of the configuration. In this case ASD(rn−1) and ASD′(r1) both
are strictly less than ASD(r0) = ASD′(r0). So r0 can’t be the leader in the first
place, which is not possible. Thus the pivotal direction of the leader must be
unique.

⊓⊔

Now in a leader configuration, let us denote the i-th robot from r0, (i.e., the
leader) in the direction Dp as ri and (Ri, Ri+1)Dp

as αi, where all the indices
are considered in modulo n. Note that α0 ≤ αi, for all i. Now, if there exists
some i 6= 0 for which αi = α0 or, α0 ≥ β0 (β0 is the smallest angle in the
input target pattern according to the embedding), i.e., if α0 ≥ min

i6=0
{αi, β0} then,

the leader r0 can always move in the direction Dp, a positive angular distance
ǫ < α0 in such a way that α0 − ǫ < min

i6=0
{αi, β0} and there is no robot on the

angle bisector of the angle formed by R0 and R1, after r0 moves (Fig.6). Observe
that, (R0, R1)Dp

= α0 − ǫ, after r0 moves which is strictly less than all other
angles in the current configuration (Here, α0 = (R0, R1)Dp

before r0 moves). In
the following lemma, we have proved the existence of such ǫ. Note that after r0
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moves the configuration remains a leader configuration though the leader and the
pivotal direction might change. Note that, if the leader changes then, it must be
none other than the robot r1 in the configuration before r0 moved. But after the
move we can assure that the new α0 must be strictly less than min

i6=0
{αi, β0} i.e.,

strictly less than any other angle except the new α0 in the current configuration
as well as the minimum angle of the target configuration.

Fig. 6: Here αi = α0, so the leader r0 moves towards r1 and angular distance
ǫ such that after the move the angular distance between r0 and r1 is strictly
smallest in the current configuration and the inputs, also after moving the angle
bisector of the angle formed by r0 and r1 doesn’t contain any robot.

Lemma 3. In a leader configuration, if α0 ≥ min
i6=0

{αi, β0} where α0 is the angle

between the leader r0 and the neighbour of r0, say r1, in the direction Dp then,
there exists a positive ǫ < α0 such that ǫ > α0 −min

i6=0
{αi, β0} and after moving

ǫ angular distance towards r1, the angle bisector of r0 and r1 does not contain
any other robot.

Proof. Let us consider the open interval (α0 − min
i6=0

{αi, β0}, α0). Now for any

α ∈ (α0 −min
i6=0

{αi, β0}, α0), let PαQα be the angle bisector of the angle formed

by R0 and R1, after r0 moves an angular distance of α towards r1. without
loss of generality, it is assumed that Pα is the point on the major arc joining
R0 and R1 and Qα be the same on the minor arc after the move of r0 by an
angular distance of α towards r1. Now considering the one-one correspondence
α 7→ Qα and with similar arguments as in Lemma 1 we can prove that there
is a α ∈ (α0 −min

i6=0
{αi, β0}, α0), say ǫ, such that the angle bisector of the angle

formed by R0 and R1 after the move of r0, does not have any robot on it. Also,
since ∈ (α0 −min

i6=0
{αi, β0}, α0), the conditions ǫ < α0 and ǫ > α0 −min

i6=0
{αi, β0}

both are satisfied. ⊓⊔
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So, from a leader configuration within at most one epoch, the configuration
changes into another leader configuration where the smallest angle α0 of the
configuration is unique and also strictly less than β0, the smallest angle of the
target configuration. In this configuration if α1 > α0 is strictly less than all other
αj for all j 6= 0, 1 and also strictly less than β0, i.e., α1 < min

j 6=0,1
{αj , β0} then we

can ensure that the leader r0 and the pivotal direction Dp never changes even if
the robots r3, r4, . . . , rn−1 moves according to the algorithm 1. This is because
Algorithm APF CIRCLE ensures that no angle less or equal to α1 is formed
during the moves by the above-mentioned robots.

Now if in a leader configuration α0 < min
i6=0

{αi, β0} but α1 ≥ min
j 6=0,1

{αj, β0}

then, r2 can always move an angular distance ǫ1 towards r1 such that the resul-
tant configuration is again a leader configuration and Dp does not change due
to this movement and also, the new α1 in the resultant configuration after the
move by r2 must be strictly less than all αj and β0 where j 6= 0, 1. So, the angle
(R1, R2)Dp

, after the move by r2 becomes old α1 − ǫ1 which is strictly less than
min
i6=0,1

{αi, β0} (Fig.7). The following lemma guarantees the existence of such ǫ1.

Fig. 7: Here α1 is not strictly smaller than other αis (except i = 0) or βjs. So r2
moves an angular distance ǫ1 towards r1 such that the new α1 after the move
becomes the second uniquely minimum angle of the configuration and also less
than all βjs.

Lemma 4. If in a leader configuration α0 < min
i6=0

{αi, β0} and α1 ≥ min
j 6=0,1

{αj, β0}

then there exists ǫ1 > 0 such that α1 − min
j 6=0,1

{αj, β0} < ǫ1 < α1 − α0

Proof. From the given conditions,

α0 < min
i6=0

{αi, β0} & α1 ≥ min
j 6=0,1

{αj, β0}. (1)

We have to find an ǫ1 > 0 such that it follows the following conditions:

α0 < α1 − ǫ1 & α1 − ǫ1 < min
j 6=0,1

{αj, β0}.
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Let us consider, ǫ1 = α1 −
α0+min

i6=0

{αi,βj}

2 . Then from the inequality in (1),
α0+min

i6=0

{αi,βj}

2 > α0 and thus α1 − ǫ1 > α0. Hence first part is proved.

To prove the second part, if possible let,

α1 − ǫ1 ≥ min
i6=0,1

{αi, β0}

Also since min
i6=0

{αi, β0} ≤ min
j 6=0,1

{αj , β0}. We have the following inequality,

α0 +min
i6=0

{αi, βj}

2
= α1 − ǫ1 ≥ min

j 6=0,1
{αj , β0} ≥ min

i6=0
{αi, β0}

Which implies, α0 ≥ min
i6=0

{αi, β0}. Which is a contradiction to the inequality in

(1). Thus α1 − ǫ1 < min
j 6=0,1

{αj , β0} ⊓⊔

So, even after r2 moves an angular distance ǫ1 towards r1, the configuration
still remains a leader configuration which satisfies the conditions that, α0 <

min
i6=0

{αi, β0} and α1 < min
j 6=0,1

{αj , β0}. We call this kind of configuration a RFC.

The definition of RFC has been mentioned formally in the following:

Definition 12 (Ready to Form Configuration (RFC)). A leader configu-
ration is said to be a Ready to Form configuration, or a RFC, if it satisfies the
conditions α0 < min

i6=0
{αi, β0} and α1 < min

j 6=0,1
{αj, β0}.

Other than RFC we have another type of configuration called PFC that
need to be defined first.

Next when RFC is achieved the Move Ready robot ri (i ∈ 3, 4, . . . , n− 1)
moves to its corresponding target destination Ti and terminates. Note that since
α0 < α1 < min

j 6=0,1
{αj, β0} and the move of ri does not make any angle less or

equal to α1, the configuration still remains a RFC and the leader and pivotal
direction Dp does not change. We now show that from an RFC within at most
n−3 epochs, the configuration must become a PFC. For that, we need to prove
the following lemmas.

Lemma 5. In a RFC if a robot ri, i ≥ 3 is not a Move Ready robot and the
destination of ri i.e., Ti is in the direction D from Ri then, the neighbor of ri
in the direction D, say rk, must also have its target destination Tk in direction
D from Rk.

Proof. Let ri (i ≥ 3) be a robot that is not Move Ready and its destina-
tion Ti is in direction D from Ri. Let rk be the neighbour of ri in the direc-
tion D (k can be either i + 1 or, i − 1 in modulo n). Since ri is not move
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(a) Ready to Form Configura-
tion. Here α0 < min

i6=0

{αi, β0} and

α1 < min
j 6=0,1

{αj , β0}.

(b) Partially Formed configuration,
where all the robots ri, i ≥ 3 are in
target.

Fig. 8: RFC and PFC

ready, (Ri, Rk)D − (Ri, Ti)D ≤ α1. Now there can be two possibilities. Either,
(Ri, Rk)D − (Ri, Ti)D ≤ 0 or, 0 < (Ri, Rk)D − (Ri, Ti)D ≤ α1. Now, if possible
let the destination of rk i.e., Tk be in the direction D′ from Rk.

Case 1: Let (Ri, Rk)D − (Ri, Ti)D ≤ 0. This implies Ti is further than Rk in
the direction D, from Ri (Fig.9a). Now consider k = i+1 and thus the D = Dp.
Note that i then can not be n − 1 as Tn−1 can not be further than R0 = T0

in the direction Dp from Rn−1 according to the target embedding. Now, for all
other values for i ≥ 3, if Ti+1 is in the direction D′

p from Ri+1, then Ti+1 appears
before Ti in the direction Dp in the embedding which is contradiction. Similarly,
let us consider k = i − 1 and thus D = D′

p. Here note that i can not be 3 as
otherwise r3 is Move Ready. This is because T3 and T2 must be on the arc joining
from R2 to R3 in the direction Dp. Thus T3 can not be further than R2 from
R3 in the direction D′

p as, (T3, R2)D′
p
> (T3, T2)D′

p
= β2 > α1 > 0 . Now for all

other values of i > 3, it can be shown that we will arrive at a contradiction by
a similar argument as in the case where k = i+ 1 has been considered.

Case 2: Let 0 < (Ri, Rk)D − (Ri, Ti)D ≤ α1. This implies Rk is further than
Ti from Ri in the direction D but, (Ti, Rk)D ≤ α1 (Fig. 9b). Let k = i + 1 and
hence D = Dp (i can not be n − 1 as shown earlier in case 1). Now, according
to the embedding Ti can not be further than Ti+1 from T0 in the direction Dp.
Hence, Ti+1 must be on the arc joining from Ti to Ri+1 in the direction Dp. This
implies β0 ≤ (Ti, Ti+1)Dp

≤ (Ti, Ri+1)Dp
≤ α1 =⇒ β0 ≤ α1, a contradiction

due to the fact that the configuration is a RFC. Similarly if k = i− 1 and hence
the direction D = D′

p then again we will arrive at a contradiction by a similar
argument.
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(a) case:1 (b) case:2

Fig. 9: If the target destination Ti of the robot ri is in the direction D, then the
target destination Ti+1 of its neighbour ri+1 is also in the same direction D.

Since for both the possibilities we arrive at a contradiction, Tk must also be
in the direction of D from Rk. ⊓⊔

Lemma 6. If a RFC, is not a PFC then there exists a robot rp which is Move
Ready.

Proof. A robot is called terminated if it has already reached its target. If possible
let in a RFC the robots ri (i ≥ 3) are either terminated or not Move Ready.
Let rk be a robot from R0 in the direction Dp which has not terminated and
is not Move Ready. Let the target of rk i.e., Tk be in a direction D from Rk.
Observe that if rk = r3, then D = Dp. Otherwise, since T2 is in the direction
Dp from R2, (R3, R2)D′

p
− (R3, T3)D′

p
= (R2, T3)Dp

≥ (T2, T3)Dp
= β2 > α1 and

hence r3 becomes Move Ready. Similarly if rk = rn−1 then, Tn−1 must be in the
direction D′

p from Rn−1. Otherwise, Tn−1 must lie on the arc joining Rn−1 and
T0 = R0 in the direction Dp which implies (Rn−1, R0)Dp

− (Rn−1, Tn−1)Dp
=

(Tn−1, T0)Dp
= βn−1 > α1 a contradiction.

Now we claim that, For a robot ri, (i ≥ 3) which has not terminated and
is not move ready, if the direction of its target is in the direction D from ri,
then the neighbor of ri , say rj in the direction D must have not terminated
also. Otherwise, if rj is terminated then it must be on Tj . Also, Ti must be
on the arc joining the points from Ri to Tj in the direction D. This implies
(Ri, Rj)D − (Ri, Ti)D = (Ti, Tj)D = βt > α1 (t ∈ {i, j}) and thus ri becomes
move ready contrary to the assumption.
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So, now for a robot rk1
which is not Move Ready and has not terminated yet,

let D be the direction of Tk1
from Rk1

. Also let rk2
be the neighbour of rk1

in
the direction D. By Lemma 5 and the above claim rk2

must have not terminated
yet and the direction of Tk2

must be in the direction D from Rk2
. Now by

mathematical induction, it can be shown that all robots ri (i ∈ {3, 4, . . . , n−1})
in the direction D from rk, must have not terminated and are not Move Ready.
So either r3 or rn−1 must be not Move Ready and has not terminated. if r3 is not
move ready and has not terminated then the direction of T3 must be Dp from R3

and then by induction it can be shown that rn−1 must also be not Move ready
and has not terminated and direction of Tn−1 must be in Dp from Rn−1 which
is a contradiction. Similarly, if rn−1 is not Move ready and has not terminated
then Tn−1 must be in the direction D′

p from Rn−1 which will imply r3 is not
Move Ready and is not terminated and T3 must be in direction D′

p from R3.
which is again a contradiction. Hence the result.

⊓⊔

Now as a direct corollary of the above Lemma 6, we can conclude the follow-
ing.

Corollary 2 If a RFC is not a PFC then, in each epoch at least one of the
robots, say rp, p ≥ 3 must reach its target Tp.

Now we are in a shape to establish the claim of a RFC becoming a PFC within
n− 3 epochs using the above Corollary 2. Since in each epoch, at least one of ri
(i ≥ 3) is moving to its target Ti, and there can be at most n − 3 such robots,
we can ensure that within at most n− 3 epochs, an RFC must become a PFC.
We formalize this in the following theorem.

Theorem 1. From the initial configuration, within n epochs the configuration
will become a PFC.

Proof. From initial configuration, RFC is achieved in at most 3 epochs and from
RFC to PFC within n− 3 epochs. Hence the theorem. ⊓⊔

Now when the PFC has been achieved, then only r1 and r2 are not in T1

and T2. Note that since α1 < min
j 6=0,1

{αj , β0} ≤ β1, r1 can not move even if it is

activated earlier or together with r2. On the other hand when activated r2 first
checks if its move to T2 might change the leader and the pivotal direction. Note
that if r2 finds that β0 + β1 − α0 < βn−1 then moving to its target T2 does
not change the leader and the pivotal direction. So, in this case, it moves to T2.
Otherwise, r2 moves to a point, say D2 such that (R1, D2)Dp

= βn−1 − δ, where
δ ∈ (0, βn−1 − β0 + α0) (Fig.10). In the following lemma, we have justified that
any of such moves by r2 does not change the leader and the pivotal direction.

Lemma 7. In a PFC, after r2 moves for the first time, the leader and its pivotal
direction do not change.
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Fig. 10: If β0 + β1 − α0 ≥ βn−1, then r2 moves to the point D2 in Dp such that
(R1, D2)Dp

marked here with red arc, equals to βn−1 − δ.

Proof. In a PFC, r2 always moves before r1 even if r1 is activated earlier or
together with r2. When r2 moves for the first time in a PFC, r1 is not on T1,
and r2 moves to D2. Now, either D2 = T2 or, it is a point on the circle such that,
(R1, D2)Dp

= βn−1 − δ, where 0 < δ < βn−1 − β0 + α0. As α0 < α1 < β0 ≤ β1,
then the destination D2 of r2 must be on the arc joining from point R2 to point
R3 = T3 in the direction Dp.

Case-I: If (R1, T2)Dp
= β0 + β1 − α0 < βn−1, then r2 moves to its target

T2. Then the angle sequence of r0 in the pivotal direction remains uniquely
minimum, as (R1, T2)Dp

< βn−1. Thus in this case the leader and the pivotal
direction will not change.

Case-II: If (R1, T2)Dp
= β0 + β1 − α0 ≥ βn−1, then r2 moves to a point D2

in the direction Dp such that (R1, D2)Dp
must be βn−1 − δ. Then the minimum

angle sequence of the configuration remains unique and belongs to AS(r0) and
the pivotal direction also remains same as βn−1 > βn−1−δ, for any δ ∈ (0, βn−1−
β0 + α0). ⊓⊔

After r2 moves for the first time in a PFC, r1 will now move to its target T1.
Note that until r1 reaches T1, r2 will not move even if it is activated according to
the algorithm 1. It has to be ensured that after r2 moves for the first time r1 will
move when activated and after r1 moves to T1 the leader and pivotal direction
will remain the same. The following lemmas will establish these claims.
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Lemma 8. In a PFC, after r2 moves for the first time, the condition (R1, R2)Dp
>

β1 must becomes true.

Proof. In a PFC, r2 if moves for the first time either moves to T2 or, moves to
D2 such that (R1, D2)Dp

= βn−1 − δ for some δ ∈ (0, βn−1 − β0 + α0).
Case-I: Let r2 has moved to T2. We now have to show that (R1, T2)Dp

> β1.
If (R1, T2)Dp

≤ β1 then, β0+β1−α0 ≤ β1 =⇒ α0 ≥ β0 which is a contradiction.
Hence (R1, T2)Dp

> β1.
Case-II: Now let us consider the case where r2 has moved to D2 such that

(R1, D2)Dp
= βn−1−δ, where δ ∈ (0, βn−1−β0+α0). Observe that according to

the target embedding βn−1 ≥ β1. This implies for any δ ∈ (0, βn−1 − β0 + α0),
(R1, D2)Dp

= βn−1 − δ ≥ β1 − δ > β1 and hence the result. ⊓⊔

(a) After r2 moves for the first time r1
moves to its target without collision.

(b) When r1 is on target r2, if already
not on target, moves to target T2.

Fig. 11: r1 and r2 moves to target.

In a PFC after r2 moves for the first time, it will never move again until r1
reaches its target T1. By the Lemma 8, if r2 moves for the first time, then the
condition (R1, R2)Dp

> β1 must becomes true, which makes sure that r1 can
move to T1 when activated again. We now ensure that to reach T1, r1 does not
have to cross D2. For that we have to show that (T1, D2)Dp

> 0. If possible let,
(T1, D2)Dp

= βn−1 − δ − β0 + α0 ≤ 0, then, δ ≥ βn−1 − β0 + α0 contradicting
the choice of δ. Hence to reach T1, r1 does not have to cross D2. Thus r1 moves
to T1 (Fig.11a). We now show that this move by r1 does not change the leader
and the pivotal direction if the target is already not formed.

Lemma 9. If in a PFC, r1 moves to its target T1, then either pattern formation
is complete or, the leader and the pivotal direction don’t change.

Proof. If r2 already moved to T2 during the first time it moved in a PFC then,
after r1 moves to T1, the target is formed already. So let us consider, in a PFC,
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r2 during its first move moved to D2 in such a way that (R1, D2)Dp
= βn−1 − δ,

where δ ∈ (0, βn−1 − β0 + α0). This implies β0 + β1 − α0 ≥ βn−1. Now, by
Lemma 8, r1 moves to T1 and r2 is on D2. So after the move of r1 the angle
between them will be (T1, D2)Dp

. If possible let the leader or the pivotal direction
has changed by this move. This implies (T1, D2)Dp

= βn−1−δ−β0+α0 ≥ β1 =⇒
βn−1 − δ ≥ β0 + β1 − α0 ≥ βn−1 which is a contradiction. Hence the leader and
pivotal direction do not change. ⊓⊔

Now if the pattern formation is already done then upon activation again, if a
robot sees that the smallest angle sequence of the configuration is the given lex-
icographically smallest angle sequence (upto rotation) then it terminates. Note
that after pattern formation is done within one epoch all robots will terminate.
Now if the pattern is not formed even after r1 moved in a PFC, that implies r2 is
not on T2. Note that since the leader and the pivotal direction remain the same
the target embedding also remains the same. In this scenario, upon activation,
r2 moves to T2 (Fig.11b)target pattern is formed. So from a PFC within at most
4 more epochs, all the robots terminate knowing the pattern has been formed.
Now, From all of these above descriptions, we can now conclude the following
theorem.

Theorem 2. n = 2k + 1 oblivious and silent robots placed on a circle can
solve arbitrary pattern formation problem on a circle by executing the algorithm
APF CIRCLE within at most n + 4 epochs, even without chirality agreement
under a semi-synchronous scheduler iff the initial configuration is rotationally
asymmetric.

6 Randomized APF for any n ≥ 3

In the arbitrary pattern formation problem on a circle, if the leader configuration
can be achieved for any n number of robots, then the algorithm APF CIRCLE

can solve the problem of pattern formation.

Now let there are n = 2k numbers of robots on the circle in the initial
configuration C(0). If there is a single nominee then the configuration is leader
configuration. Otherwise, the configuration must be a double nominee configu-
ration. Let, rn1 and rn2 be two nominees of the configuration C(0) which have
their minimum angle sequences in the directions Dn1 and Dn2 respectively. Dn1

and Dn2 can be same or different. Let, AB be the angle bisector of the angle
between rn1 and rn2, which divides the circle into two arcs. Now if Arc(rn1) con-
tains more robots than Arc(rn2), then Arc(rn1) becomes the leader and leader
configuration will be achieved. But if Arc(rn1) and Arc(rn2) contain the same
number of robots then leader configuration can’t be achieved from double nom-
inee configuration.

Let us consider the case where Arc(rn1) and Arc(rn2) contain same number
of robots. As the number of robots is even, then on the angle bisector AB either
there are two robots or no robot. Then the two nominees rn1 and rn2 randomly
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Algorithm 1: APF CIRCLE

1 r ← myself.;
2 if the configuration is not leader configuration then
3 rd ← robot on the angle bisector AB;
4 if I am rd then
5 move towards any neighbour by a small angle ǫ such that, ǫ < α0 and

rd and its neighbours don,t have any other robot on their angle
bisector;

6 else
7 ri ← the i-th robot from leader in the direction Dp;
8 Ti ← target destination of ri;
9 if I am the leader then

10 if α0 ≥ min
i6=0

{αi, β0} then

11 choose ǫ ∈ (α0 −min
i6=0

{αi, β0}) such that even after leader move ǫ

angular distance towards r1 the configuration remains a leader
configuration ;

12 move by an angular distance ǫ towards r1;

13 else
14 if I am r2 then
15 if all robots rp are in Tp, for all p ≥ 3 then
16 if β0 + β1 − α0 < βn−1 then
17 move to T2;
18 else
19 if r1 is not on T1 then
20 choose δ ∈ (0, βn−1 − β0 + α0);
21 move to an angular distance α0 + βn−1 − δ from r0 in

direction Dp;

22 else
23 move to T2.;

24 else
25 if α0 < min

i6=0

{αi, β0} then

26 if α1 ≥ min
j 6=0,1

{αj , β0} then

27 choose ǫ1 ∈ (α1 − min
j 6=0,1

{αj , β0}, α1 − α0);

28 move by an angular distance ǫ1 towards r1;

29 else if I am r1 then
30 if all robots rp are in Tp, for all p ≥ 3 then
31 if (R1, R2)Dp > β1 then
32 move to T1;

33 else
34 if α0 < αi,∀i 6= 0 and α0 < α1 < αi,∀i 6= 0, 1 and α0, α1 < βj ,∀j

then
35 if I am rp and I am Move Ready then
36 Move to Tp;
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choose a positive ǫ independently in the directions of their minimum angle se-
quences and move the angular distance ǫ towards its neighbor in the direction
of its minimum angle sequence. For each nominee, ǫ is chosen independently. So
the probability of their choice of the same ǫ is 0. Thus for a different choice of
ǫ, one of the angle sequences of a nominee must be minimum and that will be
considered as the leader, and leader configuration will be achieved. So a proba-
bilistic algorithm can be given to solve the arbitrary pattern formation problem
on the circle for an even number of robots.

7 Conclusion

The arbitrary pattern formation problem is a classical problem in the field of
swarm robotics. Till now it has been studied considering the euclidean plane
and some discrete domains mostly. In continuous domains, there are certain en-
vironments that restrict the movement of the robot in any direction. Any closed
curve embedded on a plane is an example of this. In the real world, this kind
of environment can be seen everywhere, for example, train lines, road networks,
etc. It can be argued that a problem solvable in a continuous circle can be solved
on any closed curve. So here, in this paper, this problem has been introduced on
a continuous circle for the first time. Here, considering a rotationally asymmetric
initial configuration having an odd number of oblivious and silent robots, a dis-
tributed deterministic algorithm APF CIRCLE has been provided that solves
the arbitrary pattern formation problem on a continuous circle of fixed radius
within O(n) epochs of time under a semi-synchronous scheduler. To justify the
initial rotationally asymmetric configuration, it has been also been shown that
if the initial configuration is rotationally symmetric then, no deterministic al-
gorithm exists that solves the arbitrary pattern formation problem on a circle.
Furthermore, by tweaking the deterministic algorithm a little bit, a probabilistic
algorithm has been described that solves arbitrary pattern formation problem
for any n number of robots on a circle, where n ≥ 3.

For the days ahead, it would be really interesting if this problem can be solved
under an asynchronous scheduler. Also, another interesting thing to check would
be to find out if there is an initial configuration and a target configuration such
that for any embedding of the target the time taken by the n robots to form the
target is O(n) or not. If this lower bound is O(n) then the algorithm presented
here is time optimal otherwise another time the optimal algorithm has to be
designed. Furthermore, for a swarm of an even number of robots our algorithm
is not deterministic. So, it would be another way to carry forward this research
to find out if there is any deterministic algorithm for an even number of robots.
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